
Perl basics version 8 (2006-10-06) 1

Perl basics: a concise guide

Version 8
October 6, 2006

Copyright 2006 Paul M. Hoffman. Some rights reserved. This
work is made available under a Creative Commons license – see
http://creativecommons.org/licenses/by/2.5/ for the terms of the
license.

The latest version of this guide is available for download at
http://hoffmancommapaul.com/perl/guide/.

2 Perl basics version 8 (2006-10-06)

Note

Notations such as this indicate a reference to one or more sections of
the standard Perl documentation:

☛ perldata, perlsyn

To see the documentation for a section, use its name (e.g., “perldata”)
as an argument to the perldoc command at the Unix or DOS prompt
(e.g., ”perldoc perldata”) or look it up by name in the online Perl
documentation at http://perldoc.perl.org/.

Perl basics version 8 (2006-10-06) 3

Scalar values and variables
☛ perlintro, perldata, perlsyn, perlop

Declare a scalar variable (a string or a number)
my $name;
my $age;
my ($allowance, $favorite_vegetable);

Assign a value to a scalar variable
$name = 'Yolanda';
$age = 3;
($allowance, $favorite_vegetable)
 = ('$1/week', 'rutabagas');

Declare and assign at the same time
my $name = 'Yolanda';
my $age = 3;
my ($allowance, $favorite_vegetable)
 = ('$1/week', 'rutabagas');

4 Perl basics version 8 (2006-10-06)

Non-scalar values and variables
Arrays
An array is a list of values
my @pets = ('Lucky', 'Fido', 'Genghis');
my @lucky = (7, 23, -9041.618);
Members of arrays are always scalars
my $first_lucky_number = $lucky[0];
$lucky[1] = $lucky[0] + 1;

Hashes
A hash is a list of (key => value) pairs
my %email = (
 'Yolanda' => 'yoyo@mama.com',
 'Dr. Smith' => 'ima@doctor.com',
 'Paul' => 'paul@hoffmancommapaul.com'
);
Members of hashes are always scalars
my $from_address = $email{'Paul'};
$email{'Ulysses'} = 'hotbody8273@aol.com';
delete $email{'Dr. Smith'};

Perl basics version 8 (2006-10-06) 5

Quotes
Variables are interpolated in double quotes
my $name = 'Paul';
my $greeting = "Hi, my name is $name.";
Same result:
my $greeting = "Hi, my name is Paul."

This includes members of arrays
my @friends = ('Sam', 'Xerxes');
print "My best friend is $friends[0].\n";
print "My 2nd best friend is $friends[1].\n";

And members of hashes
my %age = ('Sam' => 2, 'Xerxes' => 117);
print "Sam is $age{'Sam'} years old.\n";

Variables are not interpolated in single quotes
my $variable_name = '$name';

Variables are interpolated only once
print "$variable_name\n";
Same result:
print "'$name'\n";
Also the same:
print '$name', "\n";

Character escapes inside double quotes ("...")
\n newline
\t tab
\" double quote
\$ dollar sign
\@ at sign
\\ backslash

6 Perl basics version 8 (2006-10-06)

Character escapes inside single quotes ('...')
\' single quote
\\ backslash

Other ways of quoting
qq{Hi, $name\n} same as "Hi, $name\n"
q($3 per dozen) same as '$3 per dozen'
qw/1 2 three/ same as ('1', '2', 'three')
(Other delimiters besides {}, (), and // may be used.)

Perl basics version 8 (2006-10-06) 7

References
☛ perlref, perlreftut

Reference to a named array
my $array_ref = \@array;
foreach my $x (@$array_ref) { ... }

Reference to an anonymous array
my $array_ref = [@array];
foreach my $x (@$array_ref) { ... }

Reference to a named hash
my $hash_ref = \%hash;
while (my ($k, $v) = each %$hash_ref)) { ... }

Reference to an anonymous hash
my $hash_ref = { %hash };
while (my ($k, $v) = each %$hash_ref)) { ... }

8 Perl basics version 8 (2006-10-06)

Simple math
☛ perlop

Math operators
+, -, *, / addition, subtraction, multiplication, division
% remainder (e.g., 7 % 2 == 1)
** exponentiation (raise a number to the power of another number)

Math functions
abs(-10) absolute value (here, 10)
int(3.14159) integer part of a number (e.g., 3)
rand() random number ≥ 0 and < 1 (e.g., 0.884252106628)
int(rand(10)) random integer ≥ 0 and < 10 (e.g., 2)

Fancy math operators
$x += 12 add 12 to $x
$x -= $y subtract $y from $x
$x *= 10 multiply $x by 10

etc.
$x++, $x-- add or subtract 1 from $x

Perl basics version 8 (2006-10-06) 9

Input and output
☛ perlintro, perlfunc

Read a line from standard input (typically, the keyboard)
my $line = <STDIN>;

Write a line to standard output (typically, the display)
print STDOUT "Hello, human!\n";

Write to the default handle (normally STDOUT)
print "Hello, world!\n";

Open a file for reading
my $file = 'people.txt';
my $handle;
open $handle, '<', $file
 or die "Couldn't open $file: $!"

Read a line from an open file handle
my $line = <$handle>;

Read a line and remove the trailing newline character
my $line = <$handle>;
chomp($line);

Print the contents of a file
while (defined(my $line = <$handle>)) {
 print $line;
}

Shorter version, using implicit variable $_
while (<$handle>) {
 print;
}

10 Perl basics version 8 (2006-10-06)

Copy lines from files listed on the command line or std. input
while (<>) {
 print;
}

Open a file for writing
my $file = 'people.txt';
my $handle;
open $handle, '>', $file
 or die "Couldn't open $file: $!"

Write to an open file handle
print $handle "Hello, file!\n";

Perl basics version 8 (2006-10-06) 11

Comparisons and logical operations
☛ perlop

Compare numbers
$x == 1 and its opposite $x != 1
$x < 21 and its opposite $x >= 21
$x > $y and its opposite $x <= $y
$a <=> $b -1, 0, or 1 if $a < $b, $a == $b, or $a > $b

Compare strings
$name eq 'Bob' and its opposite $name ne 'Bob'
$name lt 'M' and its opposite $name ge 'M'
$name gt 'H' and its opposite $name le 'H'
$a cmp $b –1, 0, or 1 if $a lt $b, $a eq $b, or $a gt $b

Check to see if a value is defined
if (defined($x)) { ... }

Boolean operators
&& and
|| or
! not

Alternate Boolean operators (lower precendence)
and and
or or
not not

12 Perl basics version 8 (2006-10-06)

Loops and conditionals
☛ perlintro, perlsyn

Do something if a condition is true
if ($age < 21) {
 print "No beer for you!\n";
}

Shorter version
print "No beer for you!\n"
 if $age < 21;

Keep doing something while a condition is true
my $answer = <STDIN>;
chomp $answer;
while ($answer eq 'no') {
 print "I won't take no for an answer.\n";
 $answer = <STDIN>;
}

A more complicated example
my $num_rabbits = 2;
my $phi = (sqrt(5) + 1) / 2;
while ($num_rabbits < 1000) {
 print "There are $num_rabbits rabbits.\n";
 $num_rabbits =
 int($num_rabbits * $phi + 0.5);
}

Loop over the members of an array
my @numbers = (1..10); # 1, 2, 3, etc.
foreach my $n (@numbers) {
 print "$n potato\n";
}

Perl basics version 8 (2006-10-06) 13

Loop over the members of a hash
my %ital = (1 => 'uno', 2 => 'due');
foreach my $n (keys %ital) {
 print "The word for $n is $ital{$n}.\n";
}

Another way to do the same thing
while (my ($n, $word) = each %ital) {
 print "The word for $n is $word.\n";
}

Loop over all matches in a string
while ($rec =~ /(\d{4}-\d{4}[\dXx])/g) {
 print "Found an ISSN: $1\n";
}

Infinite loop
while (1) {
 print "I will not loop infinitely.\n";
}

Stop before the loop condition is met
while (1) {
 print "Should I stop now? ";
 last if <STDIN> =~ /^y|yes$/i;
}
foreach my $n (1..999) {
 last if int(rand(10)) == 7;
 print "$n\n";
}

14 Perl basics version 8 (2006-10-06)

Regexes (patterns)
☛ perlre, perlrequick, perlretut

Match a pattern anywhere in a string
if ($string =~ m/xxx/) {
 print "There's an xxx in there!\n";
}

The m may be omitted (and usually is)
$string =~ /xxx/

Case-insensitive match
$string =~ /xxx/i

Replace the first occurrence of xxx in a string with yyy
if ($string =~ s/xxx/yyy/) {
 print "I changed xxx to yyy.\n";
}

Replace all occurrences of xxx in a string with yyy
$string =~ s/xxx/yyy/g;

Match in $_ (the implicit variable)
/xxx/

Make substitutions in $_ (the implicit variable)
s/xxx/yyy/
s/xxx/yyy/g
s/xxx/yyy/i
s/xxx/yyy/ig

Perl basics version 8 (2006-10-06) 15

Special characters
\n matches a newline character
. matches any character except a character that matches \n
\d matches a digit (0 to 9)
\D matches any character except a character that matches \d
\s matches a space or tab character (or other whitespace)
\S matches any character except a character that matches \s
\w matches a ‘word’ character (A-Z, a-z, 0-9, or _)
\W matches any character except a character that matches \w

Anchor points (match at character boundaries)
^ matches before the first character in a string
$ matches before \n or after the last character of a string
\b matches at a word boundary

Other regex syntax
X+ matches one or more Xs in a row
X* matches zero or more Xs in a row
X? matches zero or one Xs (i.e., an optional X)
X{4} matches exactly 4 Xs
X{2,5} matches 2 to 5 Xs
X{3,} matches 3 or more Xs

Character classes
[abc] matches the character a, b, or c
[a-z] matches any lowercase letter
[A-Za-z] matches any letter
[^A-Za-z] matches any non-letter
[\d\s] matches any digit or whitespace character
[^\d\s] matches anything except a digit or whitespace character
[abc]* matches any number of a’s, b’s, and c’s in a row
etc.

16 Perl basics version 8 (2006-10-06)

Parens capture what was matched and put it in $1, $2, etc.
if ($name =~ m/^([XYZ])/) {
 print "Cool! A name beginning with $1!\n";
}

Capture matches one at a time in a loop
my $total = 0;
while ($string =~ m/(\d+)/g) {
 $total += $1;
}
print "Total: $total\n";

Capture matches all at once using the g modifier
my @numbers = ($string =~ /(\d+)/g);

Variables are interpolated when replacing
Make sure the ISSN has a hyphen
$issn =~ /^(\d\d\d\d)-?(\d\d\d[\dXx])/$1-$2/;

Look for a pattern at the beginning of a string
if ($greeting =~ m/^Hello|Hi|Howdy/) {
 print "Hi there!\n";
}

Look for a pattern at the end of a string
if ($greeting =~ m/!!+$/) {
 # Two or more exclamation points
 print "Please don't shout.\n";
}

Match an entire line of text against a set of alternatives
if ($command =~ m/^quit|exit|done$/) {
 print "Thanks for playing.\n";
}

Perl basics version 8 (2006-10-06) 17

When case doesn't matter
if ($command =~ m/^please/i) {
 print "OK.\n"
}

Negative matching
if ($command !~ m/^please/i) {
 print "You didn't say the magic word.\n";
}

Summary of regex modifiers
g match (or replace) all occurrences, not just the first one
i don’t care about case (upper or lower)
x comments and whitespace in regex are ignored
e evaluate substitution string as a Perl expression

18 Perl basics version 8 (2006-10-06)

Subroutines and blocks
☛ perlsub

Define a subroutine with parameters
sub greet {
 my ($name) = @_;
 print "Hello, $name.\n";
}

Call a subroutine with arguments
greet('Zainab');

Define a subroutine that returns a value
sub times_three {
 my ($number) = @_;
 return $number * 3;
}
print "6 times 3 = ", times_three(6), "\n";

A variable is invisible to anything outside its block
my $x = 123;
{
 my $y = 456;
}
print "$y\n"; # ERROR! $y not declared

A variable is not invisible to blocks within its block
my $x = 123;
{
 print "$x\n"; # OK
}

Perl basics version 8 (2006-10-06) 19

The three principle uses for hashes
Collect related attributes into a single variable
my %friend = (
 'name' => 'Ulysses K. Fishwick',
 'age' => 93,
 'favorite_color' => blue,
 # More attributes here...
);

“Attach” information to names, IDs, etc.
my %ages = (
 'Xerxes' => 108,
 'Yolanda' => 3,
 'Zainab' => 57
);

Keep sets of things
my %fruit = (
 'apple' => 1,
 'orange' => 1,
 'banana' => 1,
 'kiwi' => 1,
 # etc.
);
my @things = ('egg', 'apple', 'shovel');
Which of these is a fruit?
foreach my $thing (@things) {
 print "$thing\n" if $fruit{$thing};
}

20 Perl basics version 8 (2006-10-06)

The good, the bad, and the ugly
BAD: Regexes that look like monkeys typed them
$x =~ s/^(\d(-?\d+){2}(-?[\dXx]))$/norm($1)/e;

GOOD: Regexes that use the x modifier, whitespace, & comments
$x =~
s/^
 (
 \d # Country code
 (-?\d+){2} # Publisher-specific
 (-?[\dXx]) # Check digit
)
$/
 norm($1); # Normalize it
/ex;

BAD: Repetitive, duplicative code
print "Name: ";
my $name = <STDIN>; chomp $name;
die "No name" unless defined $name;
print "Age: ";
my $age = <STDIN>; chomp $age;
die "No name" unless defined $name;

Perl basics version 8 (2006-10-06) 21

GOOD: Isolate specific, well-defined functionality in subroutines
sub ask {
 my ($attribute) = @_;
 print ucfirst($attribute), ': ';
 my $val = <STDIN>;
 die "No $attribute" if !defined($val);
 chomp $value;
 return $value;
}
my $name = ask("name");
my $age = ask("age");

22 Perl basics version 8 (2006-10-06)

Random wisdom
Always let the Perl interpreter help with simple mistakes
use warnings;
use strict;

Declare variables when you use them (or perhaps sooner)
print "Name: ";
my $name = <STDIN>;
print "Hello, $name.\n";
print "Age: ";
my $age = <STDIN>;

Add comments as you write your code
Collect ISBNs from the input
my @isbns;
while (<>) {
 # Find ISBNs without hyphens
 while (/(\d{9}[\dXx])/g) {
 # Normalize x to upper-case
 my $isbn = uc($1);
 push @isbns, $isbn;
 }
}
Print ISBNs in ascending order
foreach my $isbn (sort @isbns) {
 print "$isbn\n";
}

Perl basics version 8 (2006-10-06) 23

Important variables
☛ perldoc perlvar
$_ the implicit variable: e.g., foreach (@foo) or while (<>)
@_ arguments passed to a subroutine
$1 (etc.) captured subpatterns
@ARGV parameters provided on the command line
$! error string (set by open, close, etc.)

24 Perl basics version 8 (2006-10-06)

Where to get help
Learn Perl
http://learn.perl.org/

perldoc
http://perldoc.perl.org/

Perl For Libraries (mailing list)
http://perl4lib.perl.org/

PerlMonks
http://www.perlmonks.org/

The Comprehensive Perl Archive Network (CPAN)
http://search.cpan.org/

Perl modules for handling MARC records and files
http://search.cpan.org/dist/MARC-Record/
http://search.cpan.org/dist/MARC-Lint/
http://search.cpan.org/dist/MARC-XML-0.83/

Perl modules for dealing with XML (just a selected few!)
http://search.cpan.org/dist/XML-Parser/
http://search.cpan.org/dist/XML-Twig/
http://search.cpan.org/dist/XML-SAX/

Perl news and articles
http://www.perl.com/

Perl basics version 8 (2006-10-06) 25

Books
Learning Perl, 4th ed. (ISBN 0-596-10105-8)
Programming Perl, 3rd ed. (ISBN 0-596-00027-8)
Perl Pocket Reference, 4th ed. (ISBN 0-596-00374-9)
Object Oriented Perl (ISBN 1884777791)
Programming the Perl DBI (ISBN 1-56592-699-4)
CGI Programming with Perl, 2nd ed. (ISBN 1-56592-419-3)

26 Perl basics version 8 (2006-10-06)

Miscellaneous
What is Perl?

Practical Extraction and Reporting Language
or Pathologically Eclectic Rubbish Lister

What is perl?
The program (“the Perl interpreter”) that runs programs written in
Perl.

What is PERL?
A misspelling you use if you want to be descended upon by a horde
of angry Perl programmers.

Why all the crazy punctuation?
Because Larry Wall has a background in linguistics? Or maybe he’s
just crazy. (There may be a correlation here…)

